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Indirect Dominant Mode Rejection: A Solution to
Low Sample Support Beamforming

Ernesto L. Santos, Michael D. Zoltowski, Fellow, IEEE, and Muralidhar Rangaswamy, Fellow, IEEE

Abstract—Under conditions of low sample support, a low-rank
solution of the minimum variance distortionless response
(MVDR) equations can yield a higher output signal-to-in-
terference-plus-noise ratio (SINR) than the full-rank MVDR
beamformer. In this paper, we investigate several low-rank beam-
forming techniques, and we also propose a new beamformer that
we refer to as the indirect dominant mode rejection (IDMR). We
analyze the degradation in the output SINR caused by residual
cross correlations embedded in the sampled covariance matrix
due to low sample support. The IDMR beamformer is based on a
parametric estimate of the covariance matrix, in which any cross
correlation is canceled out. Simulations reveal that the IDMR
beamformer yields a dramatic improvement in output SINR
relative to the conjugate gradient (CG), principal component
inverse (PCI), and dominant mode rejection (DMR) beamformers.
In our investigation of the low-rank CG beamformer, we address
the issue of whether the unity gain constraint in the look direction
should be enforced a priori via the use of a blocking matrix or
effected a posteriori through simple scaling of the beamforming
vector. Remarkably, it is proven that the two methods yield exactly
the same low-rank beamformer at each and every rank.

Index Terms—Blocking matrix, conjugate gradient beamformer,
dominant mode rejection (DMR) beamformer, indirect dominant
mode rejection (IDMR) beamformer, low sample support beam-
forming, minimum variance distortionless (MVDR) beamformer,
robust adaptive beamforming.

I. INTRODUCTION

RRAYS of sensors have been widely used in wireless
Acommunications in a variety of applications such as
sonar, radar, astronomy, medical imaging, sound processing,
and seismic exploration. In this paper, we investigate several
low-rank beamforming techniques, and we also propose a new
beamforming technique that we refer to as indirect dominant
mode rejection (IDMR) [1]. To maximize performance in a
nonstationary scenario, adaptive beamforming (ABF) is nec-
essary. In rapidly changing scenarios, only a limited number
of snapshots is available to estimate the covariance matrix;
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under these circumstances, the low-rank minimum variance
distortionless response (MVDR) equations yield faster con-
vergence in terms of the signal-to-interference-plus-noise ratio
(SINR) performance than the full-rank MVDR beamformer
[2]-[S]. Owsley [6] introduced dominant mode rejection
(DMR) low-rank ABF. Kirsteins and Tufts [7] introduced
principal components inverse (PCI) low-rank ABF. Goldstein
et al. [8] introduced the multistage Wiener filter MWF), which
was proven to be equivalent to the conjugate gradients (CG)
ABF [9]. The performance of the aforementioned beamformers
depends on the rank in which they operate. However, there is
no robust algorithm to select the optimal rank because the true
interference-plus-noise covariance matrix is not known. It is
well known that the optimum rank is a function of the number of
signal sources (dominant modes) and of the number of samples
used to estimate the covariance matrix. Through simulations we
also show that the optimum rank varies with the look direction
[10], i.e., the optimal rank of operation is not necessarily the
same for all the different signals. In the literature [6], [11],
the DMR/PCI method is applied using all of the dominant
eigenvectors of the covariance matrix. The number of dominant
eigenvectors does not vary with look direction, and therefore
does not affect all look directions with an optimal SINR. In
our simulations, we show that the output SINR can undergo
substantial variations, depending on the rank that is chosen.
Consequently, the output SINR can be seriously degraded if
the beamformer operates at an inadequate rank. To solve signal
mismatch and low sample support problems, Vorobyov et al.
proposed in [12] a robust adaptive beamforming algorithm
using worst case performance optimization. Also dealing with
signal mismatch and low sample support problems, Mestre and
Lagunas in [13] propose an optimal diagonal loading technique.
In this paper, we contribute to the ABF field by proposing the
IDMR beamformer, which operates at its maximum rank with
an output SINR very close to the maximum over all ranks.
Also, the output SINR is significantly higher than the SINR
obtained with existing ABF techniques.

The MVDR beamformer maximizes the output SINR only
when the desired signal is uncorrelated to the interference.
Due to finite sample averaging, residual correlations between
sources are present in the sample covariance matrix, causing a
degradation in the performance of MVDR-based beamformers.
Even when all incident signals are truly uncorrelated, the
sample signal-source covariance matrix intrinsically embedded
in the sample spatial covariance matrix has substantial off-di-
agonal terms. This is especially true under conditions of low
sample support, thereby giving the “appearance” of correlation
between signals. This problem is circumvented in the IDMR
algorithm proposed herein by forcing the correlation between

1053-587X/$25.00 © 2007 IEEE
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signals to be zero in the parametrically constructed spatial co-
variance matrix estimate, which is then used in the computation
of the MVDR beamformer. Through simulations, we show
that under low sample support, the IDMR beamformer yields
a substantially higher SINR than either the full-rank MVDR
beamformer or low-rank MVDR beamformers such as CG and
PCI/DMR, even when these low-rank beamformers operate
at the optimal rank. We also show through simulations that
when signals are truly correlated, the IDMR beamformer yields
substantially higher SINR than the low-rank CG and PCI/DMR
beamformers. Even though the IDMR beamformer was orig-
inally designed as a tool to circumvent residual signal-source
correlation due to low sample support, it is also effective in the
case where the sources are truly correlated.

The relationship between steering-independent ABF
and steering-dependent ABF is investigated for the case of
CG-based low-rank beamforming. The scenario assumes the
formation of multiple adaptive beams, each pointed to a dif-
ferent look direction. In steering-dependent ABF, a generalized
sidelobe canceler (GSC) [14] is formed for each look direction.
Mathematically, the GSC serves to convert the constrained
MVDR optimization problem to an unconstrained optimization
problem, thereby enforcing a priori the unity gain constraint
in the look direction. In contrast, in steering-independent
ABF, an unscaled version of the Wiener—Hopf equations is
solved, and the unity gain constraint is enforced a posteriori
through simple scaling of the resulting ABF weight vector.
Implementation of a GSC for each look direction requires the
construction and application to the data of a blocking matrix for
each look direction. The attendant computational complexity is
quite substantial. In this paper, we prove a very important and
somewhat surprising result: the low-rank beamformer obtained
with steering-dependent (SD) conjugate gradients (SD-CG) is
exactly the same as the low-rank beamformer obtained with
steering-independent (SI) conjugate gradients (SI-CG) at any
rank. Thus, the performance of SD-CG can be obtained without
having to form blocking matrices for each look direction.

In Section II, we present the signal model. In Section III,
we present some background on MVDR beamforming and
provide an overview of the SI-CG and SD-CG beamformers.
In Section IV, we prove the equivalence of the SI-CG and
SD-CG beamformers. In Section V, we show the deterioration
to MVDR-based beamformers caused by residual correlations,
and we introduce the IDMR beamformer. In Section VI,
we present the simulations where we compare the IDMR
beamformer to the existing beamformers. In Section VII, we
summarize the conclusions.

II. SIGNAL MODEL

Consider an array of m sensors receiving signals from d
sources of emission at directions 6y, k = 1,...,d with re-
spect to the broadside of the array. The angles of arrival are
enumerated such that 6, is the angle of the desired source.
We will assume that the desired source is narrowband and
that the narrowband filtering about the center frequency of the
desired source f, occurs at the front end of the receiver such
that the (d — 1) interfering signals are narrowband and colo-
cated in frequency with the desired signal at the beamformer
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input. We will also assume additive noise at each sensor. Let
x(t) = [z1(t), z2(t), ..., 2m(t)]F, where z;(t) is the signal
received at the ith array element. (.)7 denotes transpose. Given
the above-assumed scenario, x(¢) can be expressed in the
following fashion:

x(t) = As(t) + n(t). (1)

A =[a(by1),a(fs),...,a(bs)] is called the signal direction ma-
trix (SDM), where A;; = a;(0y) is the response of the ith array
element relative to that of the first element when a single signal
arrives at 0y, s(t) = [s1(t),...,5q4(t)]F, where si(t) is the
signal associated with the kth source as received at the first array
element, and n(t) = [n1(t), n2(t), ..., nm(t)]*, where n;(t) is
the additive noise present at the sth array element.

The output of the beamformer is given by y(t) = wx(t),
where w = [wy,ws,...,wy,]T is the beamformer weight

vector. (.)¥ denotes Hermitian (conjugate) transpose.

1II. MVDR BEAMFORMING

After beamforming, the output SINR can be expressed as
[12], [15]

E {|wHalsl(t)|2}
E{w! [x(t) - ausi (0] }

_ oflwHay|?

SINR =

@)

o WHR»L‘+”W

where
Rign = E{[x(t) - ansa (0] [x(t) s (0]} )

is the interference-plus-noise covariance matrix, and
02 = E{|s1(t)|?} is the power of the desired signal. Maxi-
mizing (2) is equivalent to minimizing 1/SINR, as follows:
wiR,; +nW

“

min 7.
w  o?lwHa |2
Observing that the cost function above is unaltered when w
is scaled, we can impose, without a loss of generality, the con-
straint wa; = 1, which can always be achieved by scaling w.
Hence, the maximization of the output SINR is equivalent to

min WHRH_nW
w

subject to : wha; = 1. @)

The solution to (5) is the well-known MVDR beamformer,
given by solving

Rij.w = Aa; (6)

where )\ serves to satisfy the unity gain constraint in (5).

In many practical applications, the ideal signal-free covari-
ance matrix R,;,, is unavailable, and a sample estimate from
N snapshots

R=

S|

> x(t)x" (1) @)
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is often used instead of R;,,. It is observed that if the desired
signal is uncorrelated to the interference and to the array noise,
then

min wHRw

subject to : wHa1 =1 (8)
where
R = E {x(t)x"(t)} )

is equivalent to the minimization problem of (5). Observe that
under the constraint wa; = 1

min WHRH_nW = minw?FE
x { [As(t) = ars1(t) + n(1)]
x [As(t) — ars1(t) + n(t)]H} w
= min {w?Rw — of|w"a;|?}

= minw”Rw.
w

(10)

Hence, when the desired signal is uncorrelated to the interfer-
ence and to the array noise, minimizing w#R;,,,w subject
to wia; = 1 is the same as minimizing w Rw subject to
wHa; = 1; and, therefore, the MVDR beamformer with ei-
ther R;,, or R maximizes the output SINR. It is important to
note that this only happens when the true covariance matrix is
known and the desired signal is uncorrelated to the interference
and to the array noise. Even when sources are truly uncorre-
lated, residual correlations arise due to finite sample averaging,
causing the output SINR to be significantly degraded, since min-
imizing w# Rw is not tantamount to minimizing w” R, w.
This motivates us to introduce IDMR beamforming, which is
based on a parametric estimate of the correlation matrix where
the residual correlations are canceled out. The IDMR beam-
former is presented in Section V.

Low-rank MVDR steering-independent beamformers arise
when a a low-rank solution for (6) is used. SI-CG consists
of using the CG algorithm [16] to solve (6); this solution is
obtained by minimizing the quadratic function

L wm H

f(w):§w Rw —w'a;. (11)
Steering-dependent ABF consists of enforcing the unity gain
constraint a priori through the use of a blocking matrix B and
thus transforming the constrained optimization problem of (5)
in an unconstrained optimization problem. The columns of B
form an orthonormal basis for the orthogonal complement of
the steering vector a;. While B is not unique, it must satisfy

R(B) =a;

BB =1 (12)

where the operator R denotes range of a matrix, and I denotes
the identity matrix. There are several forms to find a blocking

3285

matrix B; computation through a Householder transformation
is shown in the Appendix. Expressing w as
1
w = —(a; + Bu) (13)
m
guarantees that the unity gain constraint is satisfied a priori.
Substituting (13) into (5) leads to the unconstrained optimiza-
tion problem
1
min — (a; + Bu)”R(a; + Bu). (14)
u m
Taking the gradient of (14) with respect to u dictates that the
optimal value of u is the solution to
(BERB)u = -B”Ra;. (15)
Low-rank-MVDR-steering-dependent adaptive beamforming
methods consist of using a low-rank solution for (15) and
substituting it in (13). When the full-rank solution is taken, both
solutions of (6) and (13), SI and SD beamforming, respectively,
yield the same weight vector w. When a low-rank solution is

used, the low-rank SI and SD weight vectors are not guaranteed
to be equal.

IV. EQUIVALENCE BETWEEN SI-CG AND SD-CG

In the SI-CG beamformer, the CG algorithm is used to solve
(6), note that (see [17] and [18]) at step r, the output vector of the
CG algorithm w’ (") minimizes the R-norm of the error, which
is given by

€si (WI(T)) = (W'<T) - R_la1)H R (w’(r) — R_1a1)
(16)
subjected to w’(") being constrained within the Krylov subspace
K"), defined by the column space of K" below:

st

o ‘R tay]. (17)
It follows from [9] that after r steps of CG, the solution is con-
strained to lie in a r-dimensional Krylov subspace. Thus, it is
referred to as a rank r solution.

For the purposes of comparing the performance of SD-CG
relative to SI-CG, we desire that the rank-one solution for both
methods be the scaled steering vector (1/m)a;, which is tanta-
mount to the CBF. Thus, for SD-CG, (r — 1) steps of CG are
taken in solving (15) to obtain the solution denoted u("~"). Sub-
stituting u("—Y) for u into (13) yields the rank r SD-CG beam-
former denoted w'”.

Similarly to w’("), u("=1 is restricted to lie in the Krylov sub-
space qu(f_l) defined by the range space of the matrix KS]’_I),
where K{” is defined as

K{) = |B”Ra, : (BYRB)B”Ra, : -

{(BERB)"'BfRa,
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)

In turn, (13) and the equation above dictate that w_ ;' is restricted
to lie in the range space of the matrix
K" = [al fBKfj‘l)]. (18)

Simple algebraic manipulation leads to the following expression
for the Krylov subspace Kgfl) represented by the range space of

K" = |:a1 :(BBPR)a; : ... f(BBHR)T_lal} . (19)

The following theorem states that the SD-CG and SI-CG
Krylov subspaces of dimension r are the same.
Theorem 1:

.R"a;} = span{a;, (BB¥R)a,,
...,(BB¥R) a;},

span{a;,Ray, ...

r=1,2,...,m.

Proof is by induction. The basis case is proven in step 1, and
the induction step is proven in step 2 below.
1) Basis case:

span{a;, Ra;} = span{a;, BB Ra, }.

Proof:

i) [a;1:B] is an orthonormal basis for R™ since B is
the orthogonal complement of a; by construction,
and the columns of B are orthonormal. BB is a
projection matrix.

. 38|Ra; = Ba; + BBPRa,.

ii) span{a;,Ra;} = span{a;,fa; + BBHRal}:
span{a;, BBYRa,} ]
2) Inductive step:
Define C = BB”R.

If span{a;,Ra;,...,R"a;} = span{a;,Cay,...,

Cra;}, then span{a;,Rai,...,R""la;} =
span{a;, Cay, ...,C"tla;}
Proof:

i)

Y4 >0,36;|Ria;
= B;ja; + BB"Riay,
Vk > 0, span{a;,Rai,...,RFa;}
= span{a;, f1a; + BBfRay,
..., Pra1 + BBZR"a;}

= span{a;, BB¥Ra,, ..., BB7R*a,}.

i)
Cr—i—lal
= C(Cral)
= C(Z a;R'a;), by induction hypothesis
i=0

= Z arBBER ™ a,.
1=0
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iii)
,Cral, CTHal}
7:R,Tal7 CT'Hal},

by induction hypothesis
= span{a;, BBRa;, ...

span{a;, Cay,...

= span{a;,Ray,...

.BBZR"a,,

> a;BB"R™a;}, byi)andii)
i=0
_ H
= span{a;, BB" Ray,
...,BB”R"a;, BBYR"*1a;}
=span{a;,Raj,...,R"a;, R""'a;}, by i).
Proof: |
Thus, the rank r SI-CG and SD-CG beamformers are con-
strained to lie in the same subspaces.

()

A. Closed-Form Expressions for w,

Since we have proved that the rank r beamformers for SI-CG
and SD-CG lie in the same subspace, the unscaled (prior to
scaling to satisfy the unity gain constraint) SI-CG beamformer
w;gT) may be expressed as

W/S(ir) _ Kg:)y(r)
—K"x™

sd

(20)

where y(") and x(") are r x 1 vectors whose elements com-
bine the columns of K; and K4, respectively. At this point,
we seek a closed-form expression for x("), with KEZ) given by
(19). With this, the rank r SI-CG beamformer is expressed in
the Krylov basis of the SD-CG beamformer. Later, we find a
closed-form expression for the rank » SD-CG beamformer in the
same basis. We can then easily compare the SI-CG and SD-CG
beamformers.

The value of x(") is obtained by substituting w
Kgi)x(r) into the objective function in (16) and noting that x(")
minimizes the function. Subsequently, taking the gradient and
setting it to zero yields

() _

si

K{)"RK([)x" —K{)"a, = 0

—1
= x = (K('(;)HRKM) K%a,. @1

s sd

Substituting the expression for Kgfl) in (18), the inverse of
K"PRK") may be expressed as

sd sd

(K(rmRK(r))‘l

sd sd

_[ afRa, afRBK (™" ‘1. o)

K V"BHRa; K VYBYRBK{
In addition, it follows that

K" a, =[1:0)". (23)
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Substituting (22) and (23) into (21) dictates that only the first
column of the inverse matrix in (22) is needed. Invoking the
block matrix inversion lemma, x(") may be computed as

1
X0 = [— (KS}“‘1>HBHRBK§;“*1>)_1 KS[‘”HBRaJ
(24)
where « is a multiplicative scalar that will be accounted for
when the unity gain constraint is satisfied. Substituting (24) into
(20), with K" given by (18), yields

wi =7 <a1 ~BK{™Y (KE}"‘I)HBHRBKS"*UA

xKy—DHBRal) .25

Since the columns of B are orthogonal to a; by construction,
scaling to satisfy the unity gain constraint simply implies

1 -1
wi = — [al ~BK{ ™V (K,Sf—”HBHRBKy—l))
m

xKS[‘l)HBRal} . (26)

(r)

sd

B. Closed-Form Expressions for w

According to (13), the rank » SD-CG beamformer may be
expressed as
rn_ 1 -
wi) = — [31 +Bu 1)}
m

1
i [al i BK,&T*UZU*U} . 27
m

Since u("~Y is determined by solving (15) via the CG algo-
rithm, it is the vector that minimizes the objective function
(r=1) (r—1) H —lnH H
€sd (u ) = (u + (B RB) B Ral)
xBPRB (u“—l) + (BHRB)’lBHRal) (28)

with u("=1) constrained to lie in the range space of the ma-
trix K in (18). Substituting K ™V z("=Y for u=1 above
dictates that z("~") is the vector that minimizes
Z(r_l)HK,(ur_l)HBHRBK5:71)Z(T_1)

+Z(T71)HK1(LT71)HBHR31 + a{{RBKSLr—l)Z(rfl)
where we have omitted an inconsequential additive constant.
Taking the gradient with respect to n("~1) and setting it to zero
yields
72-D — _ (Kg"—l)HBHRBKS[—l)) o K" YHBARa,.

(29)
In turn, substituting z("~1) back into (27) yields

sd

-1
wi =L [al _BK(D (K,S“*UHBHRBKS;“*”)
m

xK(uT_l)HBHRal] . (30)
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Equations (26) and (30) are observed to be identical, thereby
proving that the rank r SI-CG beamformer is equal to the rank r
SD-CG beamformer. Brennan, Mallett, and Reed have shown in
[19] that the full-rank MVDR steering-dependent beamformer
implemented through a sidelobe cancellation [14] and the full-
rank MVDR steering independent beamformer converge to the
same beamformer. We showed that when implemented through
CG the low-rank versions of these beamformer also yield the
same beamformer at every rank.

V. INDIRECT DMR

In Section II, we showed that when the desired signal is un-
correlated to the interference, the MVDR beamformer maxi-
mizes the output SINR. This is true even when the desired signal
is present in the covariance matrix, as long as the true correla-
tion matrix is available. If the desired signal is correlated with
the interference, then the MVDR beamformer no longer max-
imizes the output SINR. Even when the desired signal and the
interference are not correlated, the covariance matrix estimated
from a limited number of snapshots contains residual correla-
tion. Under these circumstances, the MVDR beamformer does
not maximize the output SINR [20].

As an example, we consider the case in which two uncorre-
lated signals are arriving at the array. To facilitate the analysis,
we do not include the effects of the array noise. The signal ar-
riving at the array is given by

x(t) = s1(t)a; + sa2(t)az (31)
where s1(t) and so(t) are independent complex Gaussian
random processes. The sample covariance matrix from n sam-
ples is given by

LS x(tx" (1) = [a 0]

I s OF a I s (8)s3() ][ el
X[n-lmlsz(t)sm WY Jsa(0)? MaH]' 2

2
The nondiagonal terms in the signal-source covariance matrix
(SSCM), which is represented by the matrix in the middle, con-
verge to zero as n — oo. This is proved by observing that the
mean of these nondiagonal terms is zero

1 n
E { =3 sz(t)s{(t)} =0 (33)
et
and the variance goes to zero as n — oo
I — " " ./ , olo3
B{ - 21 s2(6)s7(8) Y s3(t)sa(t) p = == (34)
t= t'=1

where 07 = E{|s1(t)|?} and 02 = E{|s1(t)|?}.

Since the variance of the nondiagonal terms go to zero rela-
tively slowly (proportional to 1/n), under low sample support,
these terms can significantly deteriorate the output SINR ob-
tained with MVDR beamforming. This motivates us to propose
the IDMR beamformer, which is based on a parametric estimate
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TABLE 1
OUTLINE OF THE IDMR ALGORITHM

i Estimate the directions of the dominant sources and form A.
ii | Estimate 02.

iii | Compute P, = diag (AT (R— &%I)ATH)

iv | Parametrically form R4, = APdAH + 6%1.

v | Compute W;gmr = (a{IR,;i}m,al)*lR_l a

idmr

of the covariance matrix in which the embedded residual corre-
lations are canceled out. In the derivation of the IDMR beam-
former, we assume that the array manifold is known. In some
practical applications, there is an error in the estimate of the
array manifold. IDMR beamforming in the presence of array
manifold mismatch will be considered in future work.

Substituting (1) into (9) and assuming that s(¢) and n(t) are
uncorrelated and E{n(t)n* (t)} = 021, where o2 is the power
of the noise at each array element, then the true covariance ma-
trix R can be given by

R = APAY + 521 (35)

where the matrix P is the signal source covariance matrix and
is given by

P =E{s(t)s"(t)}. (36)
In the IDMR beamformer, we propose to use
P, = diag (AT (R _ &31) ATH> (37)

as an estimate of the diagonalized signal source covariance ma-
trix, where AT = (A7 A)_IAH is the pseudoinverse of A.
A is formed from the estimated signal directions, given the
known form of the array manifold, and 52 is an estimate of the
noise variance. The nondiagonal elements of P, arising from
residual correlations among sources due to finite sample aver-
aging (or even due to true correlation among sources) are dis-
carded, giving rise to a diagonalized signal-source covariance
matrix estimate denoted P ;. Note from Section II that the nondi-
agonal elements cause the MVDR beamformer to not maximize
the output SINR. Thus, even when sources are truly correlated,
discarding these terms allows the MVDR beamformer to maxi-
mize the output SINR.

To compute A the directions-of-arrival of the signals arriving
at the array need to be estimated. At the expense of more com-
putational processing, a high-resolution estimation of the domi-
nant directions can be obtained applying MUSIC [21]; with con-
siderably less computation, a lower resolution estimation can be
obtained with the CBF.

Substituting A, f’d, &3 into (35) yields a parametric estimate
of the covariance matrix denoted R;q.,,. To avoid the look-di-
rection mismatch a signal in the vicinity of the look direction
should not be included in the formation of R;q,,,. The MVDR
beamformer for the signal s1(t) is then formed using Rigm, as

R 1
allR! a;’

idmr

(38)

Widmr =

Table I outlines the IDMR algorithm.
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TABLE II
DIRECTIONS AND SNRS OF INCIDENT SIGNALS

Angle (dg) | -52 -35 0 7 12 48
SNR (dB) | 162 | 162 | -3.8 | 162 | 162 | 16.2

The underlying idea of the indirect-DMR technique proposed
herein is to form a parametric estimate of the covariance matrix
given information on the location and power of the dominant
interferers previously obtained from either MUSIC or the CBF.
With this parametric estimate of the covariance matrix where the
cross correlations are removed, the MVDR beamformer maxi-
mizes the output SINR, by effectively allocating nulls at the po-
sitions of the dominant interferers. It is important to note that
low power interferers are not important when forming the para-
metric covariance matrix Riqm,, since it is not important to form
nulls toward them. Thus, the performance of the IDMR beam-
former is not compromised if weak sources are not detected by
the MUSIC algorithm.

There are several works that focus on adaptive beamforming
with low sample support. Diagonal loading of the sample covari-
ance matrix has been extensively used in adaptive beamforming,
however there has always been the issue of determining the op-
timal load. Mestre and Lagunas in [13] proposed a technique
that optimizes diagonal loading. In the IDMR algorithm, there
is also some reduced diagonal loading in the parametrically
formed covariance matrix Ry, (see Table I). Vorobyov et al.
proposed in [12] a robust adaptive beamforming algorithm using
worst case performance optimization. In Section VI, we com-
pared the performance of IDMR to the performance obtained
with Vorobyov’s beamformer.

VI. SIMULATION RESULTS

Simulations were conducted employing a uniform and
linear array of m = 24 elements with half-wavelength spacing
receiving plane-wave signals. In the simulations, perfect knowl-
edge of the array manifold was assumed, that is, no steering
vector mismatch was considered. It is relevant to note that
perfect knowledge of the array manifold does not imply perfect
knowledge of the matrix A. To estimate A, it is also necessary
to know the directions-of-arrival (DOAs) of the interference
signals, and in the simulations, the interference DOAs are
estimated. The noise at each array element is spatially and
temporally white Gaussian. The incident signals are modeled
as narrowband with amplitudes modeled as complex Gaussian
random processes. We considered a scenario with six uncorre-
lated incident signals with arrival directions (in degrees) and
respective signal-to-noise ratios (SNRs) (in decibels) at each
array element as shown in Table II.

Fig. 1 shows the output SINR versus the rank of the beam-
former for the signals at 0° and 7°; the SINR plotted is the av-
erage over 200 Monte Carlo simulation runs. The beamformers
employed were the SI-CG, SD-CG, and DMR. The DMR beam-
former requires an estimate of the array noise power, and since
this beamformer is included with the only purpose to serve as
a reference, the true value of the noise power is used as its
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3
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Fig. 1. SINR performance for the CG and DMR beamformer using R and
R;;, and 24 snapshots. (a) Low power signal at 0°. (b) High power signal
at 7°.

own estimate. In accordance with Section IV, where we proved
the equality of the SI-CG and SD-CG beamformers, the output
SINR obtained with these two beamformers is shown to be the
same. The MVDR beamformer with the true covariance matrix
is plotted to serve as a reference of optimality.

In Fig. 1, we also show the case that the signal-free sample
covariance matrix f{i+n is available, and we plotted the output
SINR employing the DMR and CG beamformers (from now on,
we only refer to the CG beamformer, since SI-CG and SD-CG
yield the same beamformer). The desired signal is not present in
Ri-{—n- It can be observed that the output SINR is substantially
higher when using f{Hn than when using R. The degradation
of the output SINR when using R is not caused by the pres-
ence of the desired signal by itself, but by the effect of residual
correlations between the desired signal and the interferers. We
observe from (34) that the variance of the residual correlation
is proportional to the power of the desired signal, to the power
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Fig. 2. SINR performance for low power signal at 0°. (a) Six snapshots.
(b) Twenty-four snapshots.

of the interferer, and to the inverse of the number of snapshots
(1/n).InFig. 1(a), the desired signal (located at 0°) has a power
of 20 dB (100 times) less than the desired signal (located at 7°)
in Fig. 1(b). We observe that for the same number of 24 snap-
shots, the degradation when using R instead of f{i+n is much
severe in the case of Fig. 1(b) (approximately 25 dB) than in the
case of Fig. 1(a) (approximately 8 dB). This is because the vari-
ance of the residual correlations in Fig. 1(b) is 100 times larger
than in Fig. 1(a).

Figs. 2 and 3 show the output SINR when the IDMR beam-
former is used. The IDMR beamformer is implemented with
both the CBF and MUSIC to locate the dominant peaks. While
MUSIC yields finer estimates than the CBF, the former requires
significantly more computational power. We observe that even
when the CBF is used, the results are significantly better than
those obtained using the existing low-rank beamforming tech-
niques, such as CG and DMR. The reason for this improvement
is that, in the IDMR technique, the residual correlations are not
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Fig. 3. SINR performance for low power signal at 7°. (a) Six snapshots.
(b) Twenty-four snapshots.

present in the parametrically formed covariance matrix. It can
be observed that the residual correlations is a big problem, espe-
cially under low sample support (see (34)). We observe in Figs. 2
and 3 that when the signal-free covariance matrix RHH is used,
the optimum SINR achieved using CG is close to the SINR ob-
tained with the IDMR technique. Under higher sample supports,
the effect of residual correlations is not so dramatic, and the im-
provement obtained with IDMR is not so expressive. The rank
of the IDMR beamformer is the number of estimated signal di-
rections used to form the matrix A.. The directions are sorted by
descending order of estimated signal power; that is, the steering
vector of the signal with the strongest power is used as the first
column of A and so forth. The rank of the beamformer is equiv-
alent to the number of columns of A.. The number of spectrum
peaks obtained with either MUSIC or the CBF is always smaller
than M = 24, so the maximum rank of the IDMR beamformer
is less than 24. The figures show the output SINR until the rank
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of 24. Thus, we repeat for the remaining ranks, the output SINR
achieved when all the distinct peaks of the MUSIC or CBF spec-
trum have been incorporated into A. The IDMR beamformer
requires an estimate of the noise power at the array elements; in
the simulations, we used

&121 = A3 + const (39)
where )13 is the thirteenth-largest eigenvalue. We used o2 /1000
as the constant; the purpose of this constant is to not let 62
vanish when the number of snapshots is very small. When using
MUSIC for a first estimate of the directions, we used only the
12 noise eigenvectors. In this particular case, a maximum of 18
could have been used, but we used only 12 for more conservative
results. In addition to a higher output SINR than obtained with
either CG and DMR, IDMR has the important advantage that
the maximum SINR over all the ranks is very close to the SINR
obtained at the maximum rank; thus, it is different from CG and
DMR in that rank selection is not an issue (see Figs. 2 and 3).

Fig. 4 displays the plot of output SINR as a function of the
number of snapshots. For the CG and DMR beamformers, the
plotted SINR value is the average over 200 Monte Carlo sim-
ulation runs of the maximum SINR achieved over all possible
ranks. For the IDMR beamformer, the plotted SINR value is the
average of the SINR at the maximum rank. It is important to note
that in a real-life situation, there is not a reliable way to select the
optimal rank for the CG and DMR beamformers. Therefore, the
curves show an upper-bound performance for the CG and DMR
beamformers. We observe that the IDMR beamformer yields a
high SINR even when a very small number of snapshots is used,
e.g., with only five snapshots. When the number of snapshots is
less than the number of array elements, the sample covariance
matrix R is singular, and a singular value decomposition (SVD)
was used to estimate the noise subspace.

To illustrate the effect of residual correlations, Fig. 5 shows
a plot of the output SINR as a function of rank for the case
that the desired signal is truly correlated to an interferer. In this
scenario, the desired signal (located at 0°) is partially corre-
lated to the signal located at 7° with a correlation coefficient of
p = 0.5¢77/3 . Twenty-four snapshots were used, in addition to
the true correlation there is also the effect of the residual correla-
tions due to the low sample support. We observe that even when
the true covariance matrix is used to compute the MVDR beam-
former, performance is still degraded. This is caused by the true
correlation among signals. The IDMR beamformer cancels the
correlation embedded in covariance matrix and the output SINR
is significantly improved even when the CBF beamformer is
used to estimate the directions of the dominant signals. Observe
that when using the CG beamformer with the desired signal free
sample covariance matrix R,H_n, the output SINR is similar to
that obtained with the IDMR beamformer.

In Fig. 6, we compared the performance of the IDMR beam-
former and the robust adaptive beamforming algorithm (RABA)
proposed by Vorobyov et al. in [12]. RABA is known to be ro-
bust against low sample support and steering vector mismatch.
To facilitate comparison, we used the same scenario which was
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used in [12]. We considered the scenario with three uncorre-
lated signals arriving at the array with directions of arrival 3°,
30°, and 50° and SNRs of —10, 30, and 30 dB, respectively. The
array is linear with ten omnidirecional sensors and half-wave-
length spacing. The desired signal is the signal arriving at 3°.
RABA was applied with the constant € = 3. In Fig. 6(a), there
is no look-direction mismatch, and the output SINR is plotted
versus the number of snapshots. In Fig. 6(b), there is a look-di-
rection mismatch: the presumed and actual directions of arrival
are 3° and 5°, respectively. In this simulation, 30 snapshots were
used to estimate the sample covariance matrix, and the output
SINR is plotted versus the SNR of the desired signal at 5°. When
MUSIC is used in the first step of IDMR, the output SINR ob-
tained with IDMR is shown to be higher than the obtained with
RABA. In the case that the CBF is used in the first step of IDMR,
then RABA yields a higher SINR.
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VII. CONCLUSION

We analyzed existing low-rank beamformers and proved that
SI-CG and SD-CG yield the same low-rank beamformer at any
rank. This dictates the use of SI-CG in practice since it does not
require the costly computation of blocking matrices. Under a sit-
uation of low sample support, we investigated the performance
degradation of low-rank MVDR beamformers due to residual
correlations embedded in the sample covariance matrix. This
motivated us to propose a new adaptive beamforming technique
(IDMR) based on a parametric estimate of the covariance matrix
in which correlations among signals are effectively removed.
Simulations revealed that the IDMR beamformer yields a dra-
matic improvement in the output SINR relative to existing CG
and PCI/DMR beamformers, and unlike the CG and PCI/DMR
beamformers the performance obtained with the IDMR beam-
former does not depend on rank selection.

APPENDIX
BLOCKING MATRIX EFFECTED THROUGH
HOUSEHOLDER TRANSFORMATION

A Householder transformation is of the form

H=1, — 2vv?, where viiv = 1. (40)
I,, is the m x m identity matrix. It can be shown that the matrix
H is an unitary matrix for any unit norm vector v. Without loss
of generality, assuming that the steering vector a; has a unit
norm, we consider a unitary matrix constructed as

H = [a, : B| (41)
where B is referred to as the blocking matrix, with BHa, =0
and BEB = I,,_;. It follows from these stipulations that H
is a unitary matrix whose “action” on the steering vector is as
follows:

1
I 0
H a; = 61 = : (42)
0
Substituting (40) into (42) implies that
voaa; — 51 (43)

where « indicates proportionality. Defining an (m — 1) x m
selection matrix, I, as

L=[0:1,1] (44)

we observe that

B —TH". (45)
Thus, through a Householder transformation, the blocking ma-
trix B can be computed by

31—61

B = (I, - 2vwI'", wherev = ——
( ) lar =]

(46)
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